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1. Sard’s Theorem in Finite Dimensions

1.1. Hausdorff Measure and Dimension.

Let s and α be positive numbers, X a normed space, and A ⊂ X. Let δ(A) denote
the diameter of A,

δ(A) = sup{‖x− y‖ : x, y ∈ A}.
Let

µs,α(A) = inf

{∑
k∈N

δ(Ak)
s :
⋃
k∈N

Ak ⊃ A, δ(Ak) < α

}
.

Other than being sufficiently small and forming a countable cover of A, there is
no restriction on what these sets might be. They can be open, closed, boxes, balls, etc.

Now, we define the s-dimensional outer Hausdorff measure of A to be

µs(A) = ωs lim
α→0

µs,α(A),

where ωs = πs/2/2sΓ[(s + 2)/2]. When s is an integer, this is the volume of an
s-dimensional unit sphere in s-space. The factor ωs is a proportionality constant
between the Hausdorff outer measure and the Lebesgue outer measure. That is, in
s-dimensional space, µs(A) = λs(A), where λs(A) is the outer Lebesgue measure of A.

We call a set A s-null if µs(A) = 0, s-finite if µs(A) is finite, and s-sigmafinite if
A is a countable union of s-finite sets.

If A is s-sigmafinite, then µρ(A) = 0 for every ρ > s. Equivalently, if µρ(A) > 0,
then µs(A) =∞ for every s < ρ. It is enough to prove the result for s-finite sets, since
the s-sigmafinite case will follow from countable decomposition into s-finite sets. For
any α > 0, since µs,α(A) is an infimum, we can find a cover {Ak} with diameter less
than α such that

∑
k δ(Ak)

s < µs,α(A) + 1. Now if ρ > s then ρ− s > 0, so we have∑
k

δ(Ak)
ρ =

∑
k

δ(Ak)
ρ−sδ(Ak)

s,

and since δ(Ak) < α, we have∑
k

δ(Ak)
ρ < αρ−s

∑
δ(Ak)

s < αρ−s(µs,α(A) + 1).

This gives the inequality

0 ≤ µρ,α(A) ≤
∑
k

δ(Ak)
ρ < αρ−s(µs,α(A) + 1).

Since ρ − s > 0 and A is s-finite, we have αρ−s(µs,α(A) + 1) → 0 as α → 0, and so
the by the squeeze theorem we have µρ(A) = 0.

1.1. Remark. As a special case of the above, any subset A ⊂ Rm is s-null for any
s > m, since Rm is m-sigmafinite.
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This gives us a well defined notion of the dimension of a set. There is exactly one
value of s for which µs will give the “correct” measure of A, and this is the Hausdorff
dimension of A.

dimµ(A) = inf{ρ > 0 : µρ(A) = 0} = sup{s > 0 : µs(A) =∞},

with the convention that sup ∅ = 0.

1.2. Change of Variables.

Let

(1.2) f : R→ Rn

be a function from an open region R ⊂ Rm into Rn. If f is differentiable at a point
x ∈ R, then the rank of x is defined to be the rank of the Jacobian matrix of f at
x. If this rank is less than maximal, we call x a critical point. Note that the usual
definition of a critical point is that derivative is not surjective. With this usual defi-
nition, if m < n, then every point is critical, however we wish to differentiate between
the points which have less than maximal rank and those which have maximal rank.
Note that in the case of infinite dimensional Sard’s Theorem, it will be necessary to
use the usual definition of critical point.

The proof of Theorem 1.17 involves finding a neighbourhood N of a critical point
x0 of rank r > 0, and showing that f(N) is a null set. Without loss of generality, we
may assume that the Jacobian is in reduced form, so that the rth principle minor is
invertible, and the bottom (m−r) rows are 0. Indeed, if M is the Jacobian matrix at
x0, then we can always find a linear isomorphism A such that MA is the reduced form
of M . Then f ◦ A has MA as its Jacobian matrix at the point x′, where Ax′ = x0.
Then if we can find a neighbourhood N of x′ such that (f ◦ A)(N) is null, it follows
that N ′ = A(N) is a neighborhood of x0 such that f(N ′) is null.

Now if x0 as a critical point of rank r > 0, we define the change of variables

(1.3) u = (u1, . . . , um) = (f 1(x), . . . , f r(x), xr+1, . . . , xm).

The Jacobian of u is 
D1f

1 . . . Dmf
1

D1f
2 . . . Dmf

2

...
...

D1f
r . . . Dmf

r

0 I

 ,

where 0 is the (m− r)× (m− r) zero matrix, and I is the r × r identity matrix.

At the point x0 the determinant of this matrix is non-zero. By the inverse function
theorem it is locally invertible with inverse of class Cq near u0 = u(x0). Denoting its
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local inverse by φ, near u0 we have

φ(u) = (φ1(u), . . . , φm(u)) = (x1, . . . , xm).

Then we can write f(x) in terms of the new variables u. Define the function

(1.4) F (u) = (u1, . . . , ur, f r+1(φ(u)), . . . , fn(φ(u))),

and near u0, we have f(x) = F (u). If we let J be the Jacobian matrix of u, M ′ the
Jacobian matrix of F , and M the Jacobian matrix of f , we see that

M ′J = M.

M has rank r if and only if M ′ has rank r, so the critical point x0 of f corresponds to
the critical point u0 of F . Furthermore, we have F (u0) = f(x0), so we may consider
(1.4) near u0 instead of (1.2) near x0.

1.3. Critical points of rank < s.

1.5. Theorem. [1] Suppose that (1.2) is of class C1 on R. Then the critical points
of (1.2) constitute an m-null set.

Proof. �

In [1], Sard gives a direct proof of this theorem for m ≤ n, and the case of m > n
follows from Remark 1.1. In [2], Sard generalized this result, dropping the condition
of differentiability on R. The proof is simpler than that of Theorem 1.5, however it
requires more tools.

1.6. Lemma. [2] If x is a critical point of (1.2) of rank r < s, and if ε > 0 and
α > 0 are given, then there exists η > 0 such that

µs,α(f(Ω)) ≤ ε(δ(Ω))s,

whenever Ω is a set containing x with diameter less than η.

Before moving on, we require a few more definitions. By a cube, here we mean a
cube which is parallel the coordinate axes and open from above. That is a set

K = {y : aj ≤ yj < aj + γ, j = 1, . . . , n}.
We denote the length of the edge of the cube by eK = γ.

Now define the cubical measure of A as

cs,α(A) = inf
∑
ν

(eKν)
s,

where {Kν} is a countable cover of B by cubes all of which satisfy eK < α, and we
define the binary measure of A as

bs,α(A) = inf
∑
ν

(Kν)
s,

where the inf is taken of all countable coverings of B by cubes of the form

K = {y : kj/2h ≤ yj < (kj + 1)/2h, j = 1, . . . , n},
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where the kj and h are integers and eK = 1/2h < α.

Then we have

(1.7) n−s/2µs,αn1/2(A) ≤ cs,α(A) ≤ bs,α(A)

since the infima are taken over successively smaller classes of sets, and a cube of side
length eK has diameter

√
n(eK).

We also get the inequality

(1.8) bs,4α(A) ≤ 2n+2sµs,α(A)

from equation (9) in [2].

1.9. Lemma. [2] Let U be a cube in Rn. For any ascending sequence of sets,

Bν ⊂ Bν+1 ⊂ U ν = 1, 2, . . . ,

and for any positive integer p, we have

lim
ν→∞

bs,2−p(Bν) = bs,2−p
(

lim
ν→∞

Bν

)
,

Now we have enough to prove the generalization of Theorem 1.5.

1.10. Theorem. Suppose that A is an s-sigmafinite set of critical points of (1.2). If
the points of A are all of rank < s, then f(A) is s-null.

Note we do not assume that it is differentiable or even continuous outside of A,
nor that it satisfies any Lipschitz condition on A.

Proof. If we can prove the result for when µs(A) <∞, then the case when µs(A) =∞
will follow by the countable decomposition of A into s-finite sets.

Assume that µs(A) <∞ and let k = µs(A)+1. Let p be any given positive integer,
and ε any given positive constant. Set α = 2−(p+2). For each ν ∈ N, let Aν be the
set of points x ∈ A for which

µs,α(f(Ω)) ≤ (ε/k)(δ(Ω))s,

whenever Ω is a set containing x and δ(Ω) < 1/ν.

By Lemma 1.6, we have

Aν ⊂ Aν+1 ⊂ A =
⋃
ν

Aν = lim
ν→∞

Aν .

Since µs(Aν) ≤ µs(A) < k, we can find a cover {Aν,i : i ∈ N} of Aν such that

δ(Aν,i) < 1/ν,
∑
i

{δ(Aν,i)}s < k.

Then by the definition of Aν , we have

µs,α(f(Aν,i)) ≤ (ε/k)(δ(Aν,i))
s,
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and hence

µs,α(f(Aν)) ≤
∑
i

µs,α(f(Aν,i)) ≤ (ε/k)
∑
i

(δ(Aν,i))
s < ε.

If U is any cube in Rn, then µs,α(U ∩ f(Aν)) < ε, and by (1.8), we have

bs,4α(U ∩ f(Aν)) = bs,2−p(U ∩ f(Aν)) ≤ 2n+2sµs,α(U ∩ f(Aν)) < 2n+2sε.

Since U ∩ f(Aν) is an ascending sequence of sets contained in the cube U , we can
apply Lemma 1.9, and get that

bs,2−p(U ∩ f(A)) = lim
ν→∞

bs,2−p(U ∩ f(Aν)) ≤ lim
ν→∞

2n+2sε = 2n+2sε.

Now, by (1.7), we have

µs,n1/22−p(U ∩ f(A)) ≤ bs,2−p(U ∩ f(A)) ≤ ns/22n+2sε,

and letting p→∞, we have n1/22−p → 0, which gives

µs(U ∩ f(A)) ≤ ns/22n+2sε.

Since ns/22n+2s is a constant and ε was arbitrary, we have µs(U ∩ f(A)) = 0.
Moreover, since this holds for any cube U , we can cover f(A) in countably many
cubes, and conclude that µs(A) = 0. This completes the proof. �

1.11. Corollary. If B is any set of critical points of f , then f(B) is m-null.

Proof. Since B ⊂ Rm and Rm can be covered by countable many balls, B is m-
sigmafinite. Moreover every critical point has rank strictly less than m, so Theorem
1.10 applies with s = m. �

Hence Theorem 1.5 follows from Corollary 1.11 without any further hypothesis on
the differentiability of (1.2).

1.4. Critical Points of rank 0.

First, we state a theorem from Morse.

1.12. Theorem. [3]

Given a positive integer q and a set A in the space of the variables x = (x1, . . . , xm),
there exists a sequence A0, A1, . . . of sets with the following properties:

(1) A =
⋃
k

Ak,

(2) A0 is countable,

(3) Ak is bounded for k ≥ 1,
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(4) if f : Rm → R is any Cq function such that its set of critical points contains
A, then

lim
x1→x

f(x1)− f(x)

‖x1 − x‖q
= 0

where x ∈ Ak and x1 approaches x in Ak.

Now we prove a result about rank 0 critical points.

1.13. Theorem. [2] Suppose that A is a s-sigmafinite set of critical points of (1.2)
all of rank 0. If f is of class Cq where q ≥ 1, then f(A) is (s/q)-null.

Proof. Again, it suffices to prove this for the case when A is s-finite.

Let K = µs(A) + 1, and decompose A into the subsets Ak as in Theorem 1.12.
Since A0 is countable, it is (s/q)-null. Now if we can show that Ak is (s/q)-null for
any k ≥ 1, it will follow that A is (s/q)-null since

f(A) =
⋃
k

f(Ak).

Note that any point x ∈ A is a critical point of each component function f j (j =
1, . . . , n) of (1.2), since A consists only of rank 0 critical points. Now fix any integer
k ≥ 1 and let ε > 0. For convenience of notation let B = Ak. Applying property (4)
of Theorem 1.12, for each x ∈ B we can find some η > 0 such that

|f j(x1)− f j(x)| ≤ (εq/s/2nKq/s)|x1 − x|q,

whenever |x1 − x| < η and x1 ∈ B. Then if Ω is any set containing x of diameter
δ(Ω) < η, and x1, x2 ∈ B ∩ Ω, we have

‖f(x1)− f(x2)‖ ≤ ‖f(x1)− f(x)‖+ ‖f(x)− f(x2)‖

≤
∑
j

|f j(x1)− f j(x)|+ |f j(x2)− f j(x)|

≤
∑
j

(εq/s/2nKq/s)|x1 − x|q + (εq/s/2nKq/s)|x2 − x|q

≤ 2n(εq/s/2nKq/s)δ(Ω)q

= (ε/K)q/sδ(Ω)q.

Hence, we have

(1.14) δ(f(B ∩ Ω)) ≤ (ε/K)q/sδ(Ω)q.

For any set Ω containing x with δ(Ω) < η.

Now we define Bν to be the set of points x in B for with (1.14) holds for any set
Ω containing x of diameter less than η = 1/ν. Then we have

Bν ⊂ Bν+1 ⊂ B = lim
ν→∞

Bν =
⋃

Bν .
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Now since

Bν ⊂ B ⊂ A,

we have

µs(Bν) ≤ µs(B) ≤ µs(A) < K.

Then by the definition of µs, for each α > 0 and each ν = 1, 2, . . ., there exists sets
Bν,i (i = 1, 2, . . .) which cover Bν and are such that

δ(Bν,i) < 1/ν, (K/ε)1/sα1/q;
∑
i

δ(Bν,i)
s < K.

Then we have

δ(f(Bν,i)) ≤ (ε/K)q/sδ(Bν,i)
q < (ε/K)q/s

[
(K/ε)1/sα1/q

]q
= α,

and

δ(f(Bν,i))
s/q ≤ (ε/K)δ(Bν,i)

s

by (1.14) with Ω = Bν,i = B ∩Bν,i = B ∩ Ω.

Now since µs/q,α is an infimum, we have

µs/q,α(f(Bν)) ≤
∑
i

δ(Bν,i)
s/q ≤ ε

∑
i

δ(Bν,i)
s/K < εK/K = ε.

Since α was arbitrary and Bν doesn’t depend on α, we can take α to 0 and get

µs/q(f(Bν)) < ε,

and since ε was arbitrary, this gives

µs/q(f(Bν)) = 0.

Hence we have

µs/q(f(B)) = µs/q

(⋃
ν

f(Bν)

)
≤
∑
ν

µs/q(f(Bν)) =
∑
ν

0 = 0.1

�

Again, Theorem 1.13 is a generalization of an earlier theorem from Sard.

1.15. Theorem. [1] Let A be the set of critical points of 1.2 of rank 0 and suppose
that f is of class Cq, q ≥ 1. Then f(A) is s-null if s ≥ (m/q).

Proof. A is an m-sigmafinite set of critical points of rank 0 since A ⊂ Rm and Rm

is m-sigmafinite. Then Theorem 1.13 applies with s = m, so f(A) is (m/q)-null and
hence s-null for any s ≥ (m/q). �

1.16. Corollary. If (1.2) is smooth, and A is the set of critical points of rank 0, then
f(A) has Hausdorff dimension 0.

1 In [2], Sard uses the regularity of the measure µs/q to get the equation µs/q(f(B)) =
limν µs/q(f(Bν)) = 0, however we believe that this would require further hypotheses on the sets Ak
or Bν . In order to use regularity you would need to approximate f(B) by compact subsets f(Bν)
which would require the Bν to be compact. This is avoided by using the sub-additivity of µs/q.



VARIATIONS ON SARD’S THEOREM 9

Proof. If f is of class C∞, then it is of class Cq for every q, and hence f(A) is (m/q)-
null for every q. Then for every ε > 0, we can find q large enough so that f(A) is
ε-null. Hence the Hausdorff dimension of f(A) is 0. �

1.5. Sard’s Theorem.

1.17. Theorem. [1] Suppose that m > n and let A be the set of critical points of rank
r < n of (1.2). Then f(A) is n-null if q ≥ m−r

n−r .

Proof. If r = 0, then this reduces to Theorem 1.15 with s = n.

Suppose that 0 < r < n. We will show that there is a neighbourhood around each
point of A for which f(N ∩ A) is an n-null set. Covering A in countably many of
these neighbourhoods will show that f(A) is n-null.

Consider a point x0 ∈ A and introduce the change of variables (1.3). Let N be
the closure of an open neighbourhood N of u0 (the image of x0 under the change of
variables). We regard u1, . . . , ur as parameters for each permissible set of values of
which

F̂ = (F r+1, . . . , F n)

defines a map from the (m−r)-space (ur+1, . . . , um) into the (n−r)-space (yr+1, . . . , yn).
That is, we are fixing (u1, . . . , ur) and allowing the rest of the coordinates to vary as

much as they can. Let M∗ be the matrix of partials of F̂ . Then M∗ consists of the
bottom (m − r) rows of the Jacobian matrix of F , say M ′. Then if M ′ has rank r,
M∗ has rank 0. Thus, if (u1, . . . , um) is a critical point of rank r, then (ur+1, . . . , um)

is a critical point of rank 0 of F̂ with the parameters (u1, . . . , ur). For each set of

values of the parameters, the critical points of rank 0 of F̂ map into an (n− r)-null
set by Theorem 1.10 and our hypothesis on q.

Let B be the set of critical points of rank r of F in N . First we prove that B
is a countable union of compact sets. Let B≤r be the set of critical points of F of
rank ≤ r. We show this set is closed by showing its compliment, the set of crit-
ical points of rank > r, is open. Indeed, we can write it as the union over i of
(hi ◦DxF )−1[(−∞, 0)∪ (0,∞)], where hi is the determinant of the i’th (r+ 1) minor,
and DxF is the matrix of partial derivatives of F . Since both of these functions are
continuous, and (−∞, 0) ∪ (0,∞) is open, we have written the set Bc

≤r as a union of
open sets. Now the set of critical points of F of rank r is the set B≤r ∩ Bc

≤r−1, and

intersecting this with N gives the set B. Since Bc
≤r−1 is open, we can write it as a

countable union of compact sets, say Bν . Then we have B =
⋃
ν N ∩B≤r∩Bν , which

is a countable union of compact sets since the intersection of a compact set with a
closed set is compact.

For convenience, write B =
⋃
Cν , where the Cν are the compact sets from above.

Now the cross sections of F (Cν) for each (y1, . . . , yr) are all (n− r)-null. Since Cν is
compact, F (Cν) is compact, so it is closed and hence measurable. Then the measure
of F (Cν) is computed by integrating the characteristic function of F (Cν). Applying
Fubini’s Theorem, we first integrate over the cross sections which gives 0 since they
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are (n − r)-null. Hence F (Cν) is n-null, so F (B) =
⋃
ν F (Cν) is n-null.2 Since

f(N ∩ A) ⊂ F (B), we conclude that f(N ∩ A) is n-null, and hence f(A) is. �

Again, Sard generalized this theorem in [2], where he considered points of rank
r < s and replaced m with s in the condition on q. The idea of the proof is the same,
but it involves finding a bound on a particular integral.

Everything we have done has been with a function between Euclidean space, but
we could have done this with general smooth manifolds with the appropriate defini-
tion of s-null. If M is a smooth manifold and A ⊂M , then A s-null if for every chart
(U, φ), the set φ(U ∩A) is s-null. We don’t actually have to check this condition for
each chart however.

If (Uν , φν) is any countable collection of charts covering the set A ⊂M and satisfies
the condition that φν(Uν ∩A) is s-null for each ν, then for any other chart (U, φ) we
have

φ(U ∩ A) =
⋃
ν

φ(U ∩ Uν ∩ A) =
⋃
ν

φ ◦ φ−1ν ◦ φν(U ∩ Uν ∩ A).

Each φν(U ∩ Uν ∩ A) is s-null. Denoting it as Bν , we have

φ(U ∩ A) =
⋃
ν

φ ◦ φ−1ν (Bν),

which is a countable union of the images of s-null sets under the maps φ ◦ φν . The
fact that these images are s-null follows from a Lemma due to Sard.

1.18. Lemma. Suppose f : R → Rn is differentiable on a set B ⊂ R ⊂ Rm, then if
B is s-null or s-sigmafinite, f(B) is the same. If B is s-finite and the functional
entries in the Jacobian of f are absolutely bounded on B, then f(B) is the same.

Proof. See Lemma 1 of [2]. �

Hence we see that if A is s-null with respect to any collection of charts in an atlas
A, then it is s-null with respect to the maximal atlas containing A.

Now we state and prove what is generally known as Sard’s Theorem (see Theorem
6.10 of [4]).

1.19. Theorem. Sard’s Theorem

Let M and N be smooth manifolds with dimensions m and n respectively. Let
f : M → N be a smooth function, and A the set of critical points of f . Then f(A) is
n-null.

2 In [1], Sard claims that F (B) is closed and hence measurable, then uses the same cross section
argument to conclude F (B) is n-null. The closedness of F (B) seemed unjustified, so we reformulated
the argument in terms of compact sets.
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Proof. By covering M in countably many coordinate charts, we reduce to the case
where f : R→ Rn as before.

If m ≤ n, then by 1.5, f(A) is m-null and hence n-null. If m > n, then decompose
A into the sets Ar of critical points of rank r. By Theorem 1.17, each set f(Ar) is
n-null and hence f(A) =

⋃
r f(Ar) is n-null. �

Of course the condition on f could be weekend, we really only need f to be of class
Cq with q ≥ m − n + 1. However, when dealing with smooth manifolds the usual
interest is with smooth functions.

Again, if f : M → N is a smooth function between manifolds, we call y ∈ N a
regular value if it is not the image of a critical point. A set B ⊂ N is called dense
if its closure is the whole space N . We now have the following Corollary to Sard’s
Theorem.

1.20. Theorem. If f : M → N is smooth, and B ⊂ N is the set of regular values of
f , then B is dense in N .

Proof. Let O ⊂ N be any non-empty open subset. If O ⊂ Bc, then we can find
some non-empty open set Õ ⊂ O ⊂ Bc which is contained in a single coordinate
chart (U, φ). Then φ(Õ) ⊂ φ(U ∩Bc), and φ(Õ) is open since φ is a homeomorphism.
Since φ(Õ) is non-empty and open it has positive measure which contradicts Theorem
1.19. Hence every non-empty open subset of N intersects B. Now if y ∈ N , then
every open neighbourhood of y intersects B. This shows that y is in the closure of B
and completes the proof. �

2. Sard’s Theorem for Banach Spaces

Many of the definitions and theorems from finite dimensional calculus can be nat-
urally extended to infinite dimensions. The first notion we need is that of being
continuously differentiable, which was taken from [5].

Let U be an open subset of a Banach space E1 and E2 another Banach space.
A function f : U → E2 is called (Frechet) differentiable at x0 ∈ U if there exists a
continuous linear map Λ: E1 → E2 such that

lim
h→0

‖f(x0 + h)− f(x0)− Λh‖E2

‖h‖E1

= 0.

f is called differentiable if it is differentiable at x for every x ∈ U . If the map Λ
exists, then it is unique and we call it Df(x).

f is called continuously differentiable or of class C1 if the map

Df : U → L(E1, E2), x 7→ Df(x)

is continuous, where L(E1, E2) is the space of continuous linear operators from E1 to
E2 in the norm topology. The space L(E1, E2) is again a Banach space, so we now
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consider the map Df . If it is differentiable, then the map

D2f : U → L(E1, L(E1, E2)), x 7→ D(Df)(x)

exists. We denote L(E1, L(E1, E2)) as L2(E1, E2).

Again, if this map is continuous then we say that f is of class C2. We continue in
this way. If the map f is of class Ck, then the map Dkf : U → L(E1, L

k−1(E1, E2))
exists and is continuous. We denote L(E1, L

k−1(E1, E2)) as Lk(E1, E2). If Dkf is
differentiable, then the map Dk+1f : U → L(E1, L

k(E1, E2) exists, and we denote
L(E1, L

k(E1, E2) as Lk+1(E1, E2). If Dk+1f is continuous, then we say that f is of
class Ck+1. If the map f is of class Ck for every k, then we say f is of class C∞.

We also wish to generalize the idea of “small” sets in infinite dimensional spaces.
We use a topological definition rather than a measure. A subset A ⊂ X is said to be
nowhere dense if the interior of the closure of A is empty. A subset B ⊂ X is said to
be meagre if it can be written as a countable union of nowhere dense sets.

The closure condition in the definition of nowhere dense is important if we are
trying to capture the notion of “small” sets. We would like the countable union of
“small” sets to be “small”, and if we drop the closure condition this fails. For exam-
ple, the sets Q and R \Q both have empty interior, however their union is R.

In general, Sard’s Theorem in infinite dimensions does not hold. Ivan Kupka gave
a counter example in [6] by constructing a function F : l2 → R which is of class C∞,
yet has critical values [0, 1]. We must put an extra assumption on our function to
generalize to the case of infinite dimensions.

A Fredholm operator is a continuous linear map L : E1 → E2 between Banach
spaces with the following properties:

(1) dim KerL <∞,
(2) RangeL is closed,
(3) CokerL = E2/RangeL has finite dimension.

The Index of a Fredholm operator L is the integer dim KerL− dim CokerL. The
set of Fredholm operators between E1 and E2 is an open subset in the space of all
bounded operators between E1 and E2 in the norm topology, and the index function
is continuous on the set of Fredholm operators (Theorem (1.1) of [7]).

We consider functions f that are defined on an open connected subset U of a
Banach space E1. A Cq, q ≥ 1, function f : U → E2 is called a Fredholm map if
Df(x) : E1 → E2 is a Fredholm operator for each x ∈ U . The Index of f is the Index
of Df(x). Since U is connected and both Df and the index function are continuous,
it follows that the index is constant and the definition does not depend on the choice
of x.

First, we prove some lemmas regarding the structure of a Banach space
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2.1. Lemma. Let E1 be a Banach space, C ⊂ E1 a finite dimensional subspace
and K ⊂ E1 a closed subspace. If the addition map +: K × C → E1 is a linear
isomorphism, then it is also a topological isomorphism.

Proof. If ‖·‖ is the norm on E1 then the norms we are considering on C and K are
the induced norms, ‖·‖K and ‖·‖C . On K ×C, we are considering the product norm
‖·‖K + ‖·‖C .

Suppose that such spaces C and K are given. If we can show that the norm on
K ×C and the norm on E1 are equivalent, then the topologies they generate will be
the same.

By the triangle inequality, we get that ‖k + c‖ ≤ ‖k‖+ ‖c‖ = ‖k‖K + ‖c‖C .

Now we will show that there is a λ > 1 such that ‖k‖K + ‖c‖C ≤ λ ‖k + c‖. First
consider c ∈ S(C) = {c ∈ C : ‖c‖C = 1}.

Since ‖c‖C = 1 and K∩C = {0} (since + is an isomorphism), we have ‖k + c‖ 6= 0.
Then consider

‖k‖K + ‖c‖C
‖k + c‖

=
‖k‖K + 1

‖k + c‖
.

If ‖k‖K > 2, then ‖k + c‖ ≥ ‖k‖ − 1 by the (reverse) triangle inequality and we
have

‖k‖K + 1

‖k + c‖
≤ ‖k‖K + 1

‖k‖ − 1
=

2

‖k‖K − 1
+ 1 ≤ 3.

Now suppose that ‖k‖K ≤ 2. First note that the distance between S(C) and K is
positive. If it were not then there would exist a sequence kn − cn with kn ∈ K and
cn ∈ S(C) such that ‖kn − cn‖ → 0. Then since S(C) is compact, there would exist
a subsequence cnl → c with c ∈ S(C). Then we would have

‖knl − c‖ ≤ ‖knl − cnl‖+ ‖cnl − c‖ → 0.

Hence we would have c ∈ K since K is closed, and this is a contradiction since
S(C) ∩K = ∅.

Hence we have,

‖k − (−c)‖ ≥ d(K, c) ≥ d(K,S(C)) > 0,

where d is the distance function. This gives

‖k‖K + 1

‖k + c‖
≤ ‖k‖K + 1

d(K, c)
≤ ‖k‖K + 1

d(K,S(C))
≤ 3

d(K,S(C))
.

Let λ > max
{

3, 3
d(K,S(C))

}
.

Now if ‖c‖C = 0, then we have ‖k‖K ≤ λ ‖k‖ since λ > 1. If ‖c‖ = t 6= 0, then we
let c′ = c/t and k′ = k/t, and since ‖c′‖C = 1 we get

‖k‖K + ‖c‖C = t
[
‖k′‖K + ‖c′‖C

]
≤ t(λ ‖k′ + c′‖) = λ ‖t(k′ + c′)‖ = λ ‖k + c‖ .
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Therefore we have

‖k‖K + ‖c‖C ≤ λ ‖k + c‖
for every k ∈ K and c ∈ C. This shows that the norms are equivalent, and hence the
topologies they generate are the same.

�

2.2. Lemma. Let E1 be a Banach space and A ⊂ E1 a finite dimensional subspace.
Then there exists a Banach space E ⊂ E1 such that the addition map +: E×A→ E1

is a topological linear isomorphism.

Proof. Since A is finite dimensional, let e1, . . . , ek be a basis, and let f1, . . . , fk be
the dual basis. Then each fi is a bounded linear functional on A, and by the Hanh-
Banach Theorem (Theorem 3.2 in [8]) can be extended to a bounded linear functional
gi on all of E1. Since boundedness and continuity are equivalent in Banach spaces,
each gi is continuous.

Now set E =
⋂k
i=1 Ker gi. Then for any x ∈ E1, we have y = x−

∑k
i=1 gi(x)ei ∈ E

since gi(y) = gi(x)− gi(x)gi(ei) = 0. Then we have

x = y +
k∑
i=1

gi(x)ei,

and moreover if x ∈ E ∩ A, then x =
∑k

i=1 αiei, and gj(x) = αj = 0 for every j, so
x = 0. Hence we have a direct sum decomposition

E1 = E ⊕ A.
Moreover since each gi is continuous and Ker gi = g−1i (0), E is an intersection of

closed sets and hence is closed (and so a Banach space). Then Lemma 2.1 applies,
and + is also a topological isomorphism. �

Recall that a map f : X → Y between topological spaces is called proper if the
inverse image of any compact set is compact.

2.3. Theorem. Let U ⊂ E1 be an open connected subset of a Banach space, and
f : U → E2 a Fredholm map. For every x ∈ U there exists a neighbourhood N1 of x
and a neighbourhood N2 of f(x) such that f(N1) ⊂ N2 and f

∣∣
N1

: N1 → N2 is proper.

Proof. See Theorem 1.6 of [7]. �

Previously, by a critical point we meant a point x for which Df(x) had less than
maximal rank. We cared about differentiating the cases of maximal rank and less
than maximal rank when the dimension of the target space was greater than the do-
main. Here, by a critical point we just mean a point for which Df(x) is not surjective.

2.4. Theorem. [Inverse Function Theorem] Let U ⊂ E1 be an open subset of
a Banach space and f : E1 → E2 be a map of class Cq, q ≥ 1. Let x0 ∈ U . If
Df(x0) : E1 → E2 is a topological linear isomorphism, then f is locally invertible
around x0 and its inverse is of class Cq.
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Proof. Theorem 1.2 in chapter XIV of [5]. �

Note that the hypothesis of Df(x0) being a topological isomorphism is not actually
necessary. If Df(x0) is a linear isomorphism, then by the Open Mapping Theorem
(Theorem 2.11 in [8]), it is also a topological isomorphism.

2.5. Lemma. Let E1, E2 be banach spaces, U ⊂ E1 open, and x0 ∈ U . Let f : U → E2

be a Cr, r ≥ 1, Fredholm map, and A = Df(x0). Then there exists a finite dimen-
sional subspace C ⊂ E2 such that E2 = Im(A)× C.

Writing f(x) = (f1(x), f2(x)) with respect to this decomposition, there exists a Cr

diffeomorphism φ : V ×W → U0, where V ⊂ Im(A), W ⊂ Ker(A), and U0 ⊂ U are
open, and are such that

fφ(v, w) = (v, f2φ(v, w)).

Proof. Pick a basis [e1], . . . , [en] for the finite dimensional space E2/ Im(A). Then
e1, . . . , en span a finite dimensional space C ⊂ E2. For any x ∈ E2, we can write
[x] =

∑
i αi[ei] ∈ E2/ Im(A). Hence x =

∑
i αiei + a for some a ∈ Im(A). Moreover

if x ∈ Im(A) ∩ C, then x =
∑

i αiei, and [x] = 0, so
∑

i αi[ei] = 0, and since [ei] is a
basis, each αi = 0. Hence, we have a direct sum decomposition E2 = Im(A)⊕C, and
again Lemma 2.1 shows that +: Im(A)×C → E2 is a topological linear isomorphism.

Now split E1 = E×Ker(A) as in Lemma 2.2 and E2 = Im(A)×C as above. With
respect to these decompositions we have f(p, q) = (f1(p, q), f2(p, q)), x0 = (p0, q0),
and

A =

(
D1f1(p0, q0) 0

0 0

)
.

By our choice of splitting of E1 and E2 we have Im(D1f1(p0, q0)) = Im(A), and
Ker(D1f1(p0, q0)) = {0}, and hence D1f1(p0, q0) : E → Im(A) is a linear isomorphism.

Now we define

F : U1 × U2 → Im(A)×Ker(A), F (p, q) = (f1(p, q), q),

where U1 ⊂ E, U2 ⊂ Ker(A) are open neighbourhoods of p0 and q0 respectively, and
U1 × U2 ⊂ U . In block form we have

DF (p0, q0) =

(
D1f1(p0, q0) 0

0 1

)
,

which is invertible since D1f1(p0, q0) is. Then by Theorem 2.4, there exists open sets
V ×W ⊂ Im(A)×Ker(A) containing F (x0) and a Cr diffeomorphism

φ : V ×W → U0

such that Fφ(v, w) = (v, w). Then we have fφ(v, w) = (v, f2φ(v, w)).
�

2.6. Theorem. Let E1 and E2 be Banach spaces, U1 ⊂ E1 an open and connected
subset, and U2 ⊂ E2 open. Suppose that f : U1 → U2 is a proper Fredholm map of
class Cq where q ≥ max{Index f, 0}. Then the set of critical values of f is meagre.
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Proof. Let B be the set of critical points of f . Consider Bc, the set of points x for
which Df(x) is surjective, and let x0 ∈ Bc. Since the set of surjective linear operators
is open in the set of all bounded linear operators with respect to the norm topology
(see Theorem 3.4 in chapter XV of [5]), it follows by the continuity of Df that there
exists a neighbourhood N of x0 such that Df(x) is surjective for every x ∈ N . Since
x0 was arbitrary, Bc is open so B is closed.

Let y be a regular value of f . Suppose that y is in the closure of f(B). Then we
can find a sequence of points f(xn)→ y with xn ∈ B. The set {f(xn) : n ∈ N} ∪ {y}
is compact, and since f is proper, the pre-image is compact. Hence the sequence
〈xn〉 has a convergent subsequence xnk → x, with x ∈ B. Since f(xn) → y, we also
have f(xnk) → y, so by the continuity of f we have f(x) = y. This contradicts the
fact that y is a regular value and hence no regular values are in the closure of f(B).
Thus, if we can prove that for any x ∈ B and any neighbourhood N of f(x) there is
a regular value y ∈ N , this will show that no point of the closure of f(B) is interior
and we will be finished.

Given a point x0 ∈ B, it is enough to show that there exists a neighbourhood
U0 of x0 such that the statement holds for f

∣∣
U0

. This is because we can cover B in

countably many of these neighbourhoods, and a countable union of meagre sets is
meagre.

Consider the open set and diffeomorphism given by Lemma 2.5. Recall the nota-
tion, φ : V ×W → U0 and fφ(v, w) = (v, f2φ(v, w)). let f(x0) = (n1, n2), and let
N1 ×N2 be a neighbourhood of f(x0). In block matrix form we have,

Dfφ(v, w) =

(
1 0

D1f2φ(v, w) D2f2φ(v, w)

)
.

It follows that Dfφ(v, w) is surjective if and only if D2f2φ(v, w) is surjective.

Consider f2φ(n1, ·) : W → C. Then by our hypothesis on q and the finite dimen-
sional Sard’s Theorem, there is a regular value z of f2φ(n1, ·) in N2. Then (n1, z)
is a regular value for fφ in N1 × N2. Indeed if fφ(v, w) = (n1, z) then v = n1 and
f2φ(n1, w) = z, so D2f2φ(n1, w) is surjective and hence Dfφ(n1, w) is surjective also.

The same value is then a regular value for f . If (p, q) ∈ U0 and f(p, q) = (n1, z),
then there exists (v, w) ∈ V × W such that φ(v, w) = (p, q). Then fφ(v, w) =
(n1, z), so Dfφ(v, w) = Df(φ(v, w))◦Dφ(v, w) is surjective and hence Df(φ(v, w)) =
Df(p, q) is surjective.

�

Now we drop the condition of f being proper and prove a version of Sard’s Theorem
for Banach spaces first given by Stephen Smale in 1965 [7].

2.7. Theorem. Let E1 and E2 be Banach spaces, U ⊂ E1 open and connected, and
f : U → E2 a Fredholm map of class Cq where q ≥ max{Index f, 0}. Then the set of
critical values of f is meagre.
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Proof. By Theorem 2.3 and the fact that U has a countable base for its topology,
we decompose U into countably many open subsets Un for which there exists open
sets Vn ⊂ E2 and are such that f

∣∣
Un

: Un → Vn is proper. The result then follows by

Theorem 2.6 and the fact that a countable union of meagre sets is meagre. �

References

[1] Arthur Sard. “The Measure of the Critical Values of Differentiable Maps”. In:
Bulletin of the American Mathematical Society, Vol. 48 (1942).

[2] Arthur Sard. “Images of Critical Sets”. In: Annals of Mathematics, Vol.68 (1958).
[3] Anthony P. Morse. “The Behavior of a Function on its Critical Set”. In: Annals

of Mathematics, Vol. 40 (1939).
[4] John M. Lee. Introduction to Smooth Manifolds, Second Edition. Springer-Verlag

New York, 2003.
[5] Serge Lang. Real and Functional Analysis, Third Edition. Springer-Verlag New

York, 1993.
[6] Ivan Kupka. “Counterexample to the Morse-Sard Theorem in the Case of Infinite

Dimensional Manifolds”. In: Proceedings of the American Mathematical Society,
Vol. 16 (1965).

[7] Stephen Smale. “An Infinite Dimensional Version of Sard’s Theorem”. In: Amer-
ican Journal of Mathematics, Vol. 87 (1965).

[8] Walter Rudin. Functional Analysis, Second Edition. McGraw-Hill, New York,
1991.


	1. Sard's Theorem in Finite Dimensions
	1.1. Hausdorff Measure and Dimension.
	1.2. Change of Variables.
	1.3. Critical points of rank<s.
	1.4. Critical Points of rank 0.
	1.5. Sard's Theorem.

	2. Sard's Theorem for Banach Spaces
	References

